
Knowledge Sharing Article
© 2023 Dell Inc. or its subsidiaries.

Rajasekhar Nannapaneni
Senior Principal Site Reliability Engineer
Dell Technologies

HPC FOR BIO-INSPIRED
OPTIMIZATION ALGORITHMS

 Learn more at www.Dell.com/Certification 2

The Dell Technologies Proven Professional Certification program validates a wide range of skills and
competencies across multiple technologies and products.

From Associate, entry-level courses to Expert-level, experience-based exams, all professionals in or
looking to begin a career in IT benefit from industry-leading training and certification paths from one of
the world’s most trusted technology partners.

Proven Professional certifications include:

• Cloud

• Converged and Hyperconverged Infrastructure

• Data Protection

• Data Science

• Networking

• Security

• Servers

• Storage

Courses are offered to meet different learning styles and schedules, including self-paced On Demand,
remote-based Virtual Instructor-Led and in-person classrooms.

Whether you are an experienced IT professional or just getting started, Dell Technologies Proven
Professional certifications are designed to clearly signal proficiency to colleagues and employers. Learn
more at www.dell.com/certification

http://www.dell.com/Certification
http://www.dell.com/certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 3

Table of Contents

Introduction: ... 4

Computing: .. 5

Parallel Computing: ... 7

HPC and its applications: ... 11

Performance of HPC: ... 14

Power Consumption of HPC: ... 17

Emergent Complexity:... 18

Natural Phenomenon: Bio-Inspired: ... 20

Optimization Problem: .. 22

Particle Swarm Optimization: ... 23

Mathematical Form of PSO: .. 23

Algorithm of PSO: .. 24

PSO as a Distributed System: .. 25

Computational Limitations of Bio-Inspired Optimizations: .. 26

Parallel Computation methods for Bio-Inspired Optimizations: .. 26

Parallel Computation using GPUs: ... 26

Parallel Computation using HPC: ... 29

Dell Apex HPCaaS: ... 31

References: ... 32

 Learn more at www.Dell.com/Certification 4

Introduction:

A supercomputer is generally considered to be a massive computational device that consists of high

specifications of processing power packed into a single machine. While there are physical and

technological constraints on scaling a single machine, evolution in computing led to enhancement

towards grouping multiple massive computational machines that can work together to solve a problem

and this scalable architecture is called high performance computing which can solve advanced

computational problems.

In the initial sections of this article, a detailed coverage on computing and parallel computing is

discussed. This also leads to the details of necessity that led to high performance computing.

Whenever there is an application on a computer, there is usually a numerical algorithm behind it or at

least we restrict ourselves to numerical algorithms in computational science. It turns out that in

computational science there are many standard algorithms. As per one of the research projects from

Berkley [2], most of computational science codes comprise one or more of the following seven basic

families or basic motives of computing which were termed as seven dwarfs.

• Dense Linear Algebra - deals with matrices or multi-dimensional structures

• Sparse Linear Algebra - in which most entries are zero

• Spectral Methods - Fourier transformations for example to solve differential equations

• N-body methods

• Structured Grids

• Unstructured grids

• Monte Carlo Methods

In the later sections of this article, one of the bio-inspired optimization algorithms called particle swarm

optimization is discussed to detail the computational needs of meta-heuristic algorithms. Details are

also discussed on how parallel computing using graphical processing units and high-performance

computing can improve efficiency in executing these nature inspired algorithms.

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 5

Computing:

At the heart of every computer, we are using the stored program computer concept which is shown in

Figure 1. It was invented in the 30s of the 20th Century and it comprises a collection of components.

There is a control unit and arithmetic logic unit which does the actual work. It is the purpose of the

control unit to read instructions from memory and these instructions are encoded as simple numbers

usually organized in bytes or words or quad words. After interpreting those instructions, the arithmetic

logic unit obtains data from memory and performs operations on that data. More data is then written

back to memory and of course we need some I/O hardware to get the results.

Out of the system, nobody has produced a more powerful and more flexible concept. Starting from the

first computers that used the stored program computer concept like the EDSAC in 1949 to typical home

computer and business computer systems in the 70s - 80s and even super computers, iPhone all of

those use the stored program computer concept.

Figure 1: Stored Program Computer

 Learn more at www.Dell.com/Certification 6

The main performance limitation, the thing that usually limits the performance of executing programs

on such a computer is memory access. Memory is usually something that can be obtained or can be built

in very large quantities, however compared to anything that happens within the core, within the

arithmetic logic unit and the control unit, memory tends to be slow. This is because it is connected via

wires and wires are much slower than connections on the chip.

The main purpose of a computer is instruction execution. Instructions are the primary resource of the

processor. When a computer architect designs a new processor, their main goal is to make instruction

execution as fast as possible.

So, processor designers use instructions as their main metric of work, however programmers as

developers in scientific computing do not care about instructions. They care about actual work and often

actual work is FLOPS or any other metric that is relevant in their context of algorithm.

Figure 2: Cache Levels

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 7

Of course, executing instructions alone does not help to get problem done, it is the secondary resource

that makes the computer work, and the secondary resource is a consequence of instruction execution,

and this is data transfer. How fast data can be transferred is determined by the maximum bandwidth

the system can provide.

As data transfers are the number one limiting factor in computing, if anything can be done to make

program move less data than the chances are that it will get faster. The main insight is that main

memory is too slow to keep up with the CPU’s hunger for data. To mitigate this, caches have been

invented. We can either build a small (with the order of tens of kilobytes) and fast memory or a large

(with the order of tens or hundreds of gigabytes) and slow memory.

So, the caches are a compromise and usually we have several levels of those in modern server CPUs as

shown in figure 2. They are three levels normally and they are used to hold data which is often used as

close as possible to the CPU. The smaller the cache, the faster it is. The outermost L3 cache is often of

the order of tens of megabytes, L2 cache is a couple of hundred kilobytes or a megabyte and L1 cache is

32 or 64 kilobytes.

Parallel Computing:

Parallel computing means that we find a way to map a numerical algorithm to the hardware of a parallel

computer.

Figure 3: Mapping numerical algorithm to parallel computer

 Learn more at www.Dell.com/Certification 8

A simple numerical algorithm is shown in the figure 3. The multiplication of a dense matrix or some

matrix with a vector which yields another vector seems simple enough, but it turns out that this

seemingly simple operation has a surprisingly rich phenomenology in terms of performance.

Every laptop now a days is a parallel computer with at least two or four cores, and we could have a

supercomputer with thousands or hundreds of thousands of cores.

The algorithm shown in figure 3 can run in parallel in all these systems so it is users’ task to find out how

to do that and how to do that fast and effective. Doing something fast and doing something effectively

may not be the same thing in parallel computing.

It is difficult to perform parallel computing because parallel computers nowadays have a very

hierarchical structure with layers upon layers of hardware units that needs to be known and addressed

when doing parallel computing.

To start with the place where the actual work is done, if it needs multiplying a matrix with a vector as

shown in figure 3, then a part of the problem requires multiplications and the accumulation. Another

part of the problem requires the work with the arithmetic, and this is done in the executional units of

each computational core as shown in figure 4.

So, there is one core which has execution units that could do single and double precision multiply, add,

subtract, and divide. There are registers which are fast places to hold data and there may be multiple

levels of cache in which the hardware keeps often used data for future reference.

Figure 4: Single CPU Core

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 9

Figure 5: Socket and cores

This is a what is called as a core, and this is the basic unit computer is made of. Several of such cores are

typically put onto a die or a chip and nowadays in the commodity server market in HPC we have up to 64

cores on such a chip or socket. These are usually put together not by themselves but also using a shared

L3 cache by which those cores can communicate with each other.

Figure 6: Node, Socket and Core

 Learn more at www.Dell.com/Certification 10

Each chip has a couple of billion transistors nowadays and it needs some infrastructure to run like

memory interface, memory DIMM, some I/O and this infrastructure we call a node.

In high performance computing the price performance sweet spot is usually a node with two such chips

or as we call them sockets. The socket or the package is the thing or the processor we get from Intel or

AMD. The socket is attached on the motherboard along with and in high performance computing

typically there are two sockets on the board, and this is called a node. It is called a node because one

operating system instance is running on such a node.

Typical in high performance computing, a node is quite space efficient with two CPUs along with their

cooling infrastructure and the memory DIMMs are at the side of the CPU's. There are also fans to blow

cool air through the system and some network infrastructure is available to provide connectivity.

It is this part of the structure that users address when they do Open MP programming. Open MP cannot

leave the node level because it requires shared memory and that is what is available at this level. If more

compute power is required, then many of such nodes are put together using a high-performance

network and this is then called a parallel computer or supercomputer.

Figure 7: HPC, Node, Socket & Core

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 11

There will be many nodes which are connected using a high-performance network and of course they

need some storage because usually in high performance computers there are minimal hard disks used

on the nodes. A hard disk is a major point of failure and the fewer hard disks you have in the compute

system the better.

HPC and its applications:

High-performance computing can process data and perform complex calculations at high speeds. To put

it into perspective a laptop or desktop with a 3 gigahertz processor can perform around 3 billion

calculations per second. While that is much faster than any human can achieve, it pales in comparison to

HPC solutions that can perform quadrillions of calculations per second.

HPC uses parallel processing for running advanced application programs efficiently reliably and quickly.

Here is a short survey about applications that high performance computing is used for:

• Weather and climate prediction:

o There is a huge amount of computing power used every day to compute tomorrow's

weather and it is successful

Figure 8: Weather Prediction

 Learn more at www.Dell.com/Certification 12

• Drug design:

o New medications especially in the current situation, a lot of cycles are spent designing

or trying to design vaccines or drugs that help against the pandemic

• Simulation of biochemical reactions:

o A major part of compute cycles in some of the supercomputers around the globe are

spent with molecular dynamics codes and quantum simulation codes that try to figure

out reactions between complex molecules

Figure 9: Simulation of Biochemical Reaction

• Processing analysis for measurement data:

o By detectors or by measurement devices in orbit

• Properties of condensed matter:

o Some of the compute cycles of supercomputers along with quantum systems are used

to study condensed matter

• Fundamental interactions and structure of matter:

o Lattice Quantum Chromo Dynamics to explore the fundamental structure of matter also

requires a lot of computer power

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 13

Figure 10: Structure of Matter

• Fluid simulations, structural analysis, fluid-structure interaction:

o Requires high compute power

• Mechanical properties of materials:

o This can also be using simulations requiring high computational power

• Rendering of 3d images and movies:

o In 1997, Titanic was the first movie in which the CGI scenes were rendered on Linux

cluster systems

Figure 11: 3d image rendering

 Learn more at www.Dell.com/Certification 14

• Medical image deconstruction:

o Generally, a CT scan or an MRI scan requires some high-performance hardware involved

that converts the raw measurement data from x-ray detectors and the MRT device to an

actual image

Figure 12: Medical Image reconstruction

Performance of HPC:

Linpack is a well-defined performance benchmark that is used to rank supercomputers worldwide.

Linpack solves a dense system of linear equation shown in figure 3, solves this for x. The size of the

system to solve is unspecified.

So, in practice to get best performance, the nodes of the supercomputer are filled with as much data as

possible. This means the matrix whose dimension is the dimension of the system is made large enough

so that almost all the memory is filled, and one can show mathematically that in this limit the

communication overhead between the parts of your system plays a minimum role.

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 15

This linpack is run and its output is 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 which is the achieved floating-point performance of the linpack

algorithm. It is measured in FLOPS which is floating point operations per second. This Linpack is used to

rank top 500 supercomputers twice every year. To put these things into perspective, in the first list

which was published in 1993 the number one was a connection machine CM5 with 1024 processors.

At that time there was no multi-core thing so, one processor was one core, one chip and one socket.

This machine had a performance 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 for linpack of 60 GigaFlops which is 60 billion floating point

operations per second.

In the current list Nov 2022, the current number one is the Frontier system which has 8.7 million

processors or to be exact 8.7 million cores and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 performance of 1102 PetaFlops.

First: 1993 (#1: CM5 / 1024 procs.): 60 Gflops/s

Nov 2022 (#1: Frontier / 8.7 mi procs.): 1102 Pflops/s

Based on these numbers, it quite some ratio that there is a performance increase over those 30 years of

approximately 79 percent per year from 1993 to 2022.

According to Moore's law the complexity of the number of transistors on a chip double about every 24

months. If Moore's law is compared with this observed increase in performance of HPC, we can notice

that HPC performance grows faster than Moore's law and this is because over the years parallelism has

caused this acceleration.

So, Moore's law was well and alive up to now at least but the increase in parallelism added another

factor on top of it so the list performance grows faster than Moore's law.

So far, the performance of HPC is discussed as performance metric for linpack but in general terms

performance is the ratio of work divided by time.

 Learn more at www.Dell.com/Certification 16

Figure 13: Performance Metric of HPC

Here time is simple, it means the wall clock time, but work is a little bit more complicated and diverse.

Work can mean FLOPS which are operations such as multiply, add, subtract, divide and probably more

complicated stuff. It can also mean other things depending on what was being done for example if the

task is on structured or unstructured grids then the concept of work may be a lattice site updates as

here data is being updated on lattice sites. It could be an inner iteration of a specific problem solving. So,

performance metric is just one over time all these are viable options for work.

Flop == Floating-point operation (add, subtract, multiply, divide)

Flops/s == “how many flops can be done per second?”

Flops per second metric can mean two concepts, one you can use it to characterize a computer on how

fast a computer can possibly compute? That is, how many flops per second can it do, and it is called the

peak performance and the other meaning are how fast does it solves a given problem using a given

program?

The peak performance depends on many things and especially depends nowadays on the accuracy of

the input operands as there's double, float and half precision. This is because the float performance

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 17

which is the single position performance is twice as high as the double position performance in modern

processors. When looking at peak performance of processors then often the divides are neglected

because divides are very slow.

Following are some double-precision peak numbers for perspective:

• Top 500 Supercomputers range: 2.3 Pflops/s – 1685.65 Pflops/s

• Modern multicore server CPU: 2.3 Tflops/s

• Personal Computer: 100 – 500 Gflops/s

• Cellphone: 5 – 50 Gflops/s

Power Consumption of HPC:

HPC systems consume a lot of power and if linpack is ran for peak performance then it is a hot code

drawing a lot of power. The cost of electrical energy is significant in some countries and if you compare

the cost of electrical power over lifetime (5-6 years) of a supercomputer will approximately be equal to

the investment that is spent for procuring the system in the first place. This is a major insight and it is

important to know that that the running system costs are about as much as buying the system.

These numbers do not even include the cost for cooling. This cooling overhead will be about another 5 -

150 percent.

To a give a perspective, the top three of the current top 500 lists consumes power about 21 Mega Watt,

29 Mega Watt and 6 Mega Watt, respectively. Power is a major insight and should be considered

because it is also an environmental issue which depends on the amount of electrical energy we burn in

computers. For production usages there are some power efficient systems that can be leveraged for

computing.

 Learn more at www.Dell.com/Certification 18

Emergent Complexity:

Emergent complexity is a theory that describes how some complex systems arise. It is "a phenomenon

whereby larger entities arise through interactions among smaller or simpler entities". Essentially

emergent complexity requires two things:

• Fundamental units in a system that have some simple behavior

• An external force that drives those things to cooperate in some way

This results in some complex behavior from an optimization process.

A few examples could be hexagonal bonding of ice, ice bonds into hexagonal. Here dendritic growth

happens which allows the ice crystals to move along preferential axes in the crystal, so they grow along

preferential crystal axes and get developed into complex and interesting structures that we call

snowflakes. Another example is an ant bridge where ants just can link together to allow them to get

food from areas.

This natural selection is interesting because it generates algorithms that are good for computer science.

Life itself is just a series of emergent complexities layered on top of each other as formation of proteins,

formation of tissues and formation organs all appear to be naturally happening in a layered fashion.

Emergent complexity is not fundamentally natural phenomenon.

Complex systems are not necessarily useful but there is something interesting about the way complexity

arises in natural systems. Complexity in nature is expensive from an evolutionary level. If there is a

complex system in nature and a simple system in nature that are both solving the same problem with

the same effectiveness, the simple one will win purely because it uses less energy to achieve that.

Natural selection will dictate that the simpler one wins.

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 19

Swarm intelligence is a useful subset of systems that exhibit emergent complexity. Natural systems are

good candidates for this because they must solve some sort of problems. Another reason natural

systems have potential because problems in computer science sometimes line up incredibly well with

things that we must solve in real life. An example is path finding which is like some natural systems

trying to find food in some unknown field is the same as trying to find the minimum value for function in

some unknown search space.

Figure 14: Ant Army and Ant Bridge

Lastly nature has inherently high distributivity which can be observed when a series of organisms move

together. Ants in large groups do not become more intelligent as they increase in size of the group. Each

ant only has some finite capacity to think about its surroundings and so any algorithm that ants must

produce to solve their problems is something that we could use in a distributed system to achieve as

shown in figure 14.

Not all problems can be solved by something in nature and not all things in nature can map one to in

computer science.

 Learn more at www.Dell.com/Certification 20

Natural Phenomenon: Bio-Inspired:

Bird Flocking can be observed during sunsets. As shown in figure15, thousands of starlings moving

through space. They are solving an optimization problem which is they are trying to minimize their

energy use in traveling through space and it is quite a hard optimization problem. There's dynamic flow

of air going, the starlings themselves are simple and not so intelligent but are trying to solve a problem

with limited resources.

This bird flocking triggers a question, can we achieve something like this with a simple computer system

to solve a problem by accurately simulating this behavior. Instead of having a complicated system,

solving a complex problem with simpler emergent way seems to be right approach.

Figure 15: Bird Flocking

One of the ways could be to develop a simple model of bird-like objects called BOIDS where each BOID is

defined by its position and its velocity. Each BOID also has some total awareness of everything that is

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 21

happening around it in a specified sphere where it can see everything that is happening but can see

absolutely nothing outside that sphere.

The way the simulation can work is that at each point a time step is evolved where each part moves by

some amount corresponding to its velocity vector, then it looks around in the vicinity around it within

the sphere defined and it considers changing its velocity vector by some amount. The time steps keep

evolving and at each simulation each bird is going to change its velocity according to behaviors that are

defined.

Figure 16: Flock Behaviors

Based on how we want our system to behave, we will try to derive some behaviors shown in figure 16:

• Separation: In real-life, BOIDS cannot fly through each other, nor do they very often hit each

other because that is expensive and from an evolutionary point of view. Each bird will try to fly

away from any birds that are very close to it within its own sphere, it's kind of a smaller sphere

that it's better cares.

• Alignment: If closely observed, birds tend to agree about the direction that the flock is moving

in at that local level. However, at a high-level observation, the birds are all moving in complex

manner and kind of a very different but subtly different direction. So, a bird cares about moving

in the average direction of the birds in its vicinity to some extent.

 Learn more at www.Dell.com/Certification 22

• Cohesion: The flock moves together as a group and in real life any stragglers in a group suffer

massively more drag as they move through space. So, the birds have some incentive to keep

together and so a bird has some extent to which it wants to move towards the center of gravity

of the flock of the birds that it sees in its vicinity.

Optimization Problem:

The classical solution to an optimization problem is to take approximations to the way the function is

evolving within a local vicinity and move in the direction that corresponds to the way gradient descent

moves.

Another solution that is kind of canonical form of a class of algorithms that solve this problem is

simulated annealing. This is a more stochastic method that tries to randomly converge on the true

solution.

Figure 17: Local Minima and Maxima

Both solutions suffer from local minima in that they will return local minima as if they were a global

minimum as shown in figure 17 and so they have pathological cases that can be constructed. Since the

algorithm that we are deriving is a more kind of random inspired process that is inspired from nature,

we are expected to avoid some of those pathological cases.

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 23

Particle Swarm Optimization:

Particle swarm optimization or PSO is a population-based stochastic optimization algorithm motivated

by intelligent collective behavior of some animals such as flocks of birds or schools of fish.

Particle swarm optimization is a simple idea where flock of birds or BOIDS are considered and are moved

into search space for the function. Some new behaviors are provided to BOIDS that corresponds to them

wanting to move in the direction that minimizes the function.

Behaviors that are instilled into BOIDS are:

• Convergence: steer towards the best of the vicinity

• Separation: delegate the search space among the BOIDS

• Alignment: local agreement about the best movement

• Cohesion: prevent the flock from scattering

Mathematical Form of PSO:

The mathematical form is formulated to describes behaviors created. Vectors of length n are considered

where n is the dimensionality of the search space. The BOIDS are initialized with random uniformly

distributed random components from 0 to alpha where alpha is some parameter that is picked. The

introduction of random numbers here helps to do the magic of avoid pathological cases.

∆𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛽𝛽 𝑢𝑢1(𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑥𝑥) + 𝛾𝛾𝑢𝑢2(𝑏𝑏𝑉𝑉𝑉𝑉𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑥𝑥)

(1)

v: velocity

x: position vector

 Learn more at www.Dell.com/Certification 24

𝑢𝑢1 & 𝑢𝑢2:𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑜𝑜 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣

𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿: best fitness achieved by this particle

𝑏𝑏𝑉𝑉𝑉𝑉𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉: best fitness achieved by particles in the vicinity

𝛼𝛼,𝛽𝛽 & 𝛾𝛾: are the hyper parameters

The effect of the new convergence behavior is defined in equation 1 and it has two terms. Each bird is

now going to be tracking over time what the best position it is ever found was. As it moved through

space it will keep track of its best position. At each point, it is going to want an extent to move towards

that best position.

It is also going to ask all the birds in its vicinity what their best positions are and then it will contribute

some factor towards moving towards that position as well. There are three parameters in equation 1

where alpha describes the amount of randomness, beta and gamma define weightages of local best

found as far as opposed to its neighbors, respectively.

Algorithm of PSO:

At each time step, each particle computes the value of the fitness function at its current position and

then it compares that value to its previous best and if it is greater, updates its current best as shown in

flowchart 1. Then it changes its velocity in some way and in equation 1, the Delta function is just

considering the sum of all the behaviors that are captured prior as per the model.

Once the velocity is updated, the system says asks each bird what its best is and takes the maximum of

those best values. At this point, the best value is evaluated against our precision requirement and

accordingly stop or repeat the process.

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 25

Flowchart 1: Flowchart of PSO

PSO as a Distributed System:

So far, the work that's being done here is being done at a local level where the birds are evaluating their

own fitness functions and comparing that to their previous best, that's entirely local and then it must ask

its vicinity which is some small subset of the birds and then this global behavior of calculating the

maximum is performed.

Instead of doing the computation this way, we could calculate several iterations (say five) at every time

step and then take the maximum.

Let us have several threads each running these processes defining over a shared data structure that

allows them to access birds in their vicinity and then we can just perform this over a single thread that is

performing this process. Then we will have a concurrent algorithm that works very well using this

 Learn more at www.Dell.com/Certification 26

technique. Similarly, we can change things slightly to make a good, distributed algorithm that would

have a lot of massage passing.

Computational Limitations of Bio-Inspired Optimizations:

Bio-Inspired optimization algorithms are frequently used as one of the applications or tools of artificial

intelligence as these optimization algorithms such as swarm intelligence have overcome conventional

arithmetic and numerical methods which fail when the solutions settle in local minima or maxima.

The main drawback of bio-inspired algorithms is their hunger for intensive computational power as this

significantly time consuming when solving some of the complex functions during optimization.

Parallel Computation methods for Bio-Inspired Optimizations:

Bio-inspired optimization algorithms require high computational power and the traditional computation

via single system, or a CPU is very time consuming to solve some of the complex functions. In this

section, two parallel computing approaches are detailed that can enhance the performance of these

swarm intelligence algorithms.

Parallel Computation using GPUs:

A processor or a central processing unit also known as CPU oversees all the mathematical and logical

calculations of our computer, so its main purpose is to run instructions which we commonly known as

code. So, every time we interact with a program, every time we copy, delete files or even when we type

a single letter inside a text document all these tasks are performed by the CPU.

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 27

Additionally, all the communication between the different computer components also relies on the CPU.

So, the components do not communicate to each other directly, but they have this CPU middleman in

between.

So, CPUs are good at multitasking because we are always able to run a bunch of applications at once.

Though we tend to consider the CPUs are multi-tasking, surprisingly this is not exactly the case as the

core of our CPU can only handle one task at a time.

Figure 18: CPU Vs GPU

This core is an independent processing unit, and our multitasking abilities directly depend on how many

cores our hardware has. The most advanced and newest CPU on the market only has 32 cores. So, CPUs

are incredibly fast, but they cannot do multi-tasking.

Graphical processing units also known as GPUs oversees displaying images on your screen. Modern

GPUs are extremely powerful because often they come with their very own memory and their very own

 Learn more at www.Dell.com/Certification 28

processor. GPU's help execute code in parallel as well as offload processing on the CPU. GPUs in contrast

to CPUs use thousands of ALU's to execute huge computations in parallel such as matrix multiplication.

When running a complex parallel algorithm, instead of sending every little task to CPU, they are sent to

GPU so that those tasks can be executed in parallel. GPUs can skip this unnecessary communication and

provide you with a much faster outcome. A modern GPU has approximately 10496 cores and thus helps

making the computations parallel and faster.

Cuda is a powerful software platform that helps computer programs run faster. We often use it to solve

performance intensive problems such as cryptocurrency mining, video rendering and of course machine

learning problems. Cuda is not just software, but it is also embedded in hardware.

Cuda runs code in parallel and it allows you to switch between CPU processing and GPU processing for

very specific tasks.

Using CUDA and the GPUs, the PSO optimization algorithm can be computed in parallel and faster. One

of the ways to do so is by dissecting the algorithm into parallel and serial tasks. As shown in equation 1,

the fitness function has matrix multiplications which is a compute intensive parallel task. This fitness

evaluation step can be executed on GPU while all other steps are executed on CPU and Cuda will allow

to switch information between CPU and GPU.

The figure 19 shows the schematic of the PSO algorithm before and after dissecting. Implementing this

new approach by leveraging GPUs reduces the computational time of the optimization. However, all the

algorithm steps still take time as they are handled by the CPU on single machine.

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 29

Figure 19: PSO on GPU

Parallel Computation using HPC:

In large scale and or high dimensional optimization problems, the compute power in a single compute

machine is not sufficient and thus requires multiple compute nodes clustered together to solve the

problem. This clustered multiple distributed compute nodes are nothing but HPC cluster.

OpenMP is a shared-memory programming standard that can provide compiler directives based on

threads within a single compute node. Thus, using OpenMP provides us a way to parallelize the tasks on

a multi-core CPU within a single compute node. OpenMP allows to create multiple threads to get

processed on multiple cores.

Figure 20: Shared Memory within a node

 Learn more at www.Dell.com/Certification 30

Message Passing Interface is a distributed-memory programming standard which uses library calls to

initiate multiple processes across multiple distributed compute nodes. These processes execute tasks on

different compute nodes and interacts using the MPI communication network for information sharing.

Figure 21: Distributed Memory across nodes

If you look at modern cluster topology, then part of it namely the part inside a node or a shared memory

node is accessible to shape memory parallelization, and it seems to be the natural way to program this

subsystem to use threading model. In high performance computing and scientific computing, OpenMP is

the typical choice for that.

So, the basic idea is to combine the threading on the node level with MPI between nodes so that

message passing is done with MPI where it is necessary and everywhere we have shared memory, we

can use OpenMP.

This hybrid approach to combine OpenMP at shared memory level within node and MPI at distributed

memory level across nodes on a HPC can improve efficiency of the large scale high dimensional bio-

inspired optimization algorithms such as PSO.

http://www.dell.com/Certification

 2023 Dell Technologies Proven Professional Knowledge Sharing 31

Figure 22: Hybrid Programming using OpenMP and MPI

Dell Apex HPCaaS:

Dell Technologies Apex High Performance Computing As A Service provides HPC systems as a fully

managed solution that comes in various configurations. It is a scalable subscription-based solution that

can scale based on seasonal demands in the computational requirements. It comes with low latency

interconnect across nodes to provide highest throughput. Optimization algorithms can be implemented

using the hybrid approach of programming shared memory using OpenMP and distributed memory

using MPI to solve high dimensional large scale optimization problems.

Figure 23: Dell Apex HPCaaS Offers

 Learn more at www.Dell.com/Certification 32

References:

1) Hager, G., & Wellein, G. (2010). Introduction to high performance computing for scientists and
engineers. CRC Press.

2) Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., ... & Yelick, K.
A. (2006). The landscape of parallel computing research: A view from Berkeley.

3) de Melo Menezes, B. A., Kuchen, H., & Buarque de Lima Neto, F. (2022). Parallelization of
Swarm Intelligence Algorithms: Literature Review. International Journal of Parallel Programming,
1-29.

4) Tan, Y., & Ding, K. (2015). A survey on GPU-based implementation of swarm intelligence
algorithms. IEEE transactions on cybernetics, 46(9), 2028-2041.

5) Stojanovic, N., & Stojanovic, D. (2013). High–performance computing in GIS: Techniques and
applications. International Journal of Reasoning-based Intelligent Systems, 5(1), 42-49.

6) Lalwani, S., Sharma, H., Satapathy, S. C., Deep, K., & Bansal, J. C. (2019). A survey on parallel
particle swarm optimization algorithms. Arabian Journal for Science and Engineering, 44(4),
2899-2923.

7) Krömer, P., Platoš, J., & Snášel, V. (2013, August). A brief survey of advances in particle swarm
optimization on graphic processing units. In 2013 World Congress on Nature and Biologically
Inspired Computing (pp. 182-188). IEEE.

8) https://www.dell.com/en-us/dt/apex/compute-hci/high-performance-computing.htm#accordion0

9) https://www.top500.org/

10) https://www.mpi-forum.org/

Disclaimer: The views, processes or methodologies published in this article are those of the
authors. They do not necessarily reflect Dell Technologies’ views, processes, or methodologies.

Dell Technologies believes the information in this publication is accurate as of its publication
date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” DELL TECHNOLOGIES
MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO
THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying and distribution of any Dell Technologies software described in this publication requires an
applicable software license.

© 2023 Dell Inc. or its subsidiaries. All Rights Reserved. Dell and other trademarks are trademarks of Dell
Inc. or its subsidiaries. Other trademarks may be trademarks of
their respective owners.

http://www.dell.com/Certification
https://www.dell.com/en-us/dt/apex/compute-hci/high-performance-computing.htm#accordion0
https://www.top500.org/
https://www.mpi-forum.org/

	HPC for Bio-Inspired Optimization Algorithms-cover
	HPC for Bio-Inspired Optimization Algorithms
	Introduction:
	Computing:
	Parallel Computing:
	HPC and its applications:
	Performance of HPC:
	Power Consumption of HPC:
	Emergent Complexity:
	Natural Phenomenon: Bio-Inspired:
	Optimization Problem:
	Particle Swarm Optimization:
	Mathematical Form of PSO:
	Algorithm of PSO:
	PSO as a Distributed System:
	Computational Limitations of Bio-Inspired Optimizations:
	Parallel Computation methods for Bio-Inspired Optimizations:
	Parallel Computation using GPUs:
	Parallel Computation using HPC:

	Dell Apex HPCaaS:
	References:

