
A NEW METHOD FOR AUTOMATED
POOL REBALANCING

Krasimir Miloshev
Solutions Architect
EMC Corp. - TSG NE/Canada

2012 EMC Proven Professional Knowledge Sharing 2

Table of Contents
Introduction to Automated Pool Rebalancing ……………………………………….. 3

Using load balancing approach for relocating extends…………………………….…… 3

A fast heuristic algorithm for redistributing extends within VP storage pools..……. 6

Conclusion………………………………………………………………………………………. 9

References…………………………………………………………..…………………………... 11

Apendix…………………………………………………………………………………………… 12

Disclaimer: The views, processes, or methodologies published in this article are those of the
author. They do not necessarily reflect EMC Corporation‘s views, processes, or
methodologies.

2012 EMC Proven Professional Knowledge Sharing 3

Introduction to Automated Pool Rebalancing

Virtual Provisioning (VP) reduces allocated but unused storage and avoids over-allocation of

physical storage to applications. This mechanism uses thin storage pools, which reduces

the cost of storage, energy consumption, and footprint.

Automated Pool Rebalancing is a feature that balances the used capacity of data devices

(when it comes to Symmetrix®) within a thin pool. The operation runs as a background

process against an entire thin pool, scans the used capacity of the data devices within a

pool, and moves thin extents from the most utilized devices to the least.

- Thin Devices —seen by OS as ―normal‖ device. Physical storage, which is taken

from a pool of Data devices, need not be completely allocated at device creation

- Data Devices — internal, non-addressable device, that provides the physical storage

that is used to supply disk space for a thin device. It has multiple RAID protection

types- RAID5, RAID6, RAID1 for Symmetrix.(RAID1/0 for CLARiiON/VNX).

- Extends — part of the thin devices; Thin device extents for Symmetrix contain 768

KB. Each extent contains 1536 x 512 byte blocks.

- Storage pools — consist of data devices for Symmetrix or simply disks for

CLARiiON®/VNX®.

This Knowledge Sharing article explores ways to reduce Automated Pool Rebalancing

process time which currently takes many hours to complete.

Using load balancing for relocating extends

In computer science, load balancing is a technique used to spread work evenly between two

or more computers, network components, CPUs, hard drives, or, in general, between two or

more resources, in order to achieve optimal resource utilization, maximize throughput, and

minimize response time.

Consider this example of load balancing; A pool contains a certain number of disks n and a

certain number of newly added disks ms. Each of the current disks has a number of

extends, part of which are called extra extends. Assume Lk is the number of extra extends

residing on each of those current pool disks, where k=1..n. ‗Extra‖ means those extends that

can be moved to ―empty‖ disks (with no extends on them). Each Lk is the amount of extra

extends residing on each of the disks 1, 2,….n. Then, {L1, L2, L3… ,Ln} is a set containing all

the extra extends. Our aim is to partition this set to ms subsets P1, P2,… Pms thus that we

have minimal imbalance between the partitions Lp1, Lp2,… Lms. The goal is to optimally

http://en.wikipedia.org/wiki/Computer_networking

2012 EMC Proven Professional Knowledge Sharing 4

distribute the existing extra extends among the newly added disks, thereby minimizing

overall pool rebalancing execution time and increasing efficiency.

We will call the number of extends ―load‖, to make things comparable with the well-known

load balancing problem. There is an exact algorithm for solving the load balancing problem,

but it is impractical since its time complexity is exponential; it searches the optimal balancing

among all possible partitions of the loads (extra extends). We suggest a new heuristic

method with an algorithm for extends re-distribution among the newly added disks to the

pool. Heuristic methods are used to speed up the process of finding a satisfactory solution,

based on an intuitive judgment or common sense. It may not be the optimal solution, but

could be the best one from practical points of view. Our particular algorithm is faster than

the existing round-robin algorithm and can be applied for a large numbers of disks. The

basic idea of that algorithm is to run as many steps (passing through procedures) as ms (ms

is the number of newly added disks to the pool) and for each step to distribute an equal

number of extends such that the pool experiences minimum load misbalance between the

disks.

Consider a storage pool consisting of a certain number of disks n. This storage pool can be

extended with newly added disks if additional capacity becomes necessary. After extending

the storage pool, Automated Pool Rebalancing is run in order to redistribute the load over

the existing disks and the newly added disks, thus minimizing imbalance. Extra extends

mean the difference between the number of extends on each current disk (member of the

pool before adding new disks) and the average number aver of extends that we try to

achieve. The average number of extra extends among the current disks will be used in our

algorithm and can be determined by dividing the sum of all extra extends with the number of

newly added disks ms. The average number of extends that we try to achieve means that in

the ideal situation, after adding new disks (ms) to the pool, we have to have an equal

number of extends (aver) on each of the n+ms disks of the extended pool.

2012 EMC Proven Professional Knowledge Sharing 5

disk 1 disk 2 disk 3 ….. disk 9 disk 10
new
disk 1

new
disk 2

new
disk 3

new
disk 4

94

 80

pivot

 65

 8

 5

average

Figure 1

Figure 1 presents both existing disks in a pool and the newly added as well as the number

of extends each current disk in the pool has accommodated.

In Figure 1 all the extra extends within the current disks (part of the VP storage pool) are

shown in dark blue; extends that will not be moved are shown in light blue; new disks that

are to be added to the VP pool are shown in light brown.

n

i

iAS
1

][; piv=S/ms, piv is the average number of extra extends among the current

disks;

n

i

iAS
1

][; piv=S/(n+ms), aver is the average number of extends that we try to achieve

after adding some additional new disks (ms) to the pool;

Redistributing the load means redistributing the current extra extends. That is supposed to

assure better performance on LUNs level.

If, for example, we have 194 extends on disk 1, 180 extends on disk 2 …, 105 extends on

disk 10 , and the average number aver after adding new disks to the pool is 100, the

2012 EMC Proven Professional Knowledge Sharing 6

number of extra extends on disk 1 will be 94, on disk 2 will be 80,…., and on disk 10 will be

5. We will try to redistribute those extends among the newly added disks. The extra extends

are presented in Table 1.

A fast heuristic algorithm for redistributing extends within thin
storage pools

Let us name the new algorithm APR. Input data for APR are the current pool disks n with

their extra extends and the number ms of new disks, which will be added to the existing

storage pool. The number of current disks n and their number of extra extends are

presented via the A array. Mserv_load is an array where we will keep the total number of

extends for each of the disks after applying the method. Mserv_index is an array where we

will keep track of the redistributed extends.

1. Input data for the APR algorithm:

n - number of current disks

ms - number of newly added disks

A [n] - an array containing the number of extra extends for each of the current disks

2. Output data for the APR algorithm:

Mserv_load [ms] – an array of ms elements, where each element contains a certain
number of extends that have been allocated to the newly added disks;

Mserv_index [ms] – an array of ms elements, where each element contains the
indexes of the extra extends that have been allocated to the newly added disks.

Algorithm APR:

Step 1

n

i

iAS
1

][; piv=S/ms, piv is the average load among the extra extends for the

current disks in the pool.

Step 2 Sorting all the elements of A in decreasing order using a sorting algorithm. Of

course, the general purpose sorting algorithm—such as quick-sort—can be used in any

case.

Step 3 In the beginning, we mark each element of A as unused by setting 0 for each

element of the array named used. Initiating Mserv_index[k] and Mserv_load[k]. We assign

A[1] to the first available resource, A[2] to the second, and A[ms] to the ms-one.

Thus for k=4 we have:

Mserv_load[1]=A[1] and Mserv_index[1]={1},

Mserv_load[2]=A[2] and Mserv_index[2]={2},

Mserv_load[3]=A[3] and Mserv_index[3]={3},

Mserv_load[4]=A[4] and Mserv_index[4]={4}.

2012 EMC Proven Professional Knowledge Sharing 7

Step 4 Building up Mserv_load[k] and Mserv_index[k] by passing through all elements of

these arrays. This is a loop with control variable k=1, 2, 3,ms, whereas ms is the number of

so called extra extends. For each element Mserv_load[k], we go through all elements of the

А array (this is an inner loop with control variable j=ms+1, ms+2, ms+3, . . . , n) to update

the current Mserv_load[k] and Mserv_index[k]. For each unused element of A[j], we

determine temp[j] (the current load Mserv_load[k]) and delta[j]=temp[j]-piv, where delta[j] is

the difference between the current load and the average load, where the load is actually

related to the number of extends.

If delta[j] > 0, this unused element of A is not picked up and it is not included in

Mserv_index[k]; if delta <= 0, this unused element gets included in Mserv_index[k] and

Mserv_load[k].

During the pass through all the elements of the array А, minimal absolute positive and

absolute negative differences among all the delta[j] values are determined. We pick up the

smaller one and based on that value, we determine the selected elements which are

included in Mserv_index[k]. Essentially, we can say that our selecting criterion would be the

minimum among all absolute values of delta [j].

Step 5 Print out all the elements of Mserv_load and Mserv_index to get the load amount

and what extra extends were assigned for each of the newly added disks. Actually, each

member of the Mserv_index array represents a set of elements, and each element of that

set shows a specific newly added disk.

Example of how the algorithm works:

Let us have the ms=4 newly added disks; n=10 existing current disks and the following

values (number of so called extra extends) for each of the disks in the pool:

80,25,12,5,84,65,43,17,32,8.

i 1 2 3 4 5 6 7 8 9 10

A[i] 94 80 65 43 32 25 17 12 8 5

Table 1

First, we can determine S=380 (number of extends) and pivot=380/4=95. Then after sorting

the A array elements in decreasing order, we get an updated array A, as shown in Table 1.

A. For the first pass of the algorithm (k=1) and Mserv_load [1]=A[1]=94, we get the following

values for temp[j] and for delta[j], whereas delta[j]= temp[j] – pivot, shown in Table 2.

2012 EMC Proven Professional Knowledge Sharing 8

temp [j] delta [j]

94 -1

126=94+32 31

119=94+25 24

111=94+17 16

106=94+12 11

102=94+8 7

100=94+6 5

Table 2

From Table 2 we can see that min |delta[j]| = 1, therefore;

Mserv_load [1]=94 and Mserv_index [1]={1}

B. For the second pass of the algorithm (k=2) and Mserv_load [2]=A[2]=80, we get the

following results as shown in Table 3:

temp [j] delta [j]

80 -15

112=80+32 17

105=80+25 10

98=80+17 2

92=80+12 -3

100=80+12+8 5

98=80+12+6 3

Table 3

C. For the third pass of the algorithm (k=3) and Mserv_load[3]=A[3]=65, we get the following

results as shown in Table 4:

temp [j] delta [j]

65 -30

97=65+32 2

90=65+25 -5

102=65+25+12 7

98=65+25+8 3

95=65+25+5 0

Table 4

Here we have min Idelta [j]I=2, thus we will have Mserv_load [2]=80+17=97 and

Mserv_index [2]={2,7}. The used element 17 should not be included in our next passes. We

2012 EMC Proven Professional Knowledge Sharing 9

have min |delta[j]| = 0 for the last sum, thus we will have Mserv_load [3]=95 and

Mserv_index [3]= {3,6,10}. The used elements are 65,25,5.

D. For the last pass (k=4) and Mserv_load [4]=A[4]=43, the non-used elements are left, thus

we will have:

Mserv_load [4]=43+32+12+8=95 and Mserv_index [4]={4,5,8,9}

We have distributed extends between all four newly added disks as follows:

1. For our first disk, we have assigned extra extends from the current disk 1 with total

load=94 (number of extra extends).

2. For our second newly added disk, we have assigned extra extends from the current disk 2

and extra extends from the current disk 7 with total load 80+17=97 (number of extra

extends).

3. For the third newly added disk, we have assigned extra extends from the current disk 3,

extra extends from the current disk 6, and extra extends from the current disk 10 with total

load of 65+25+5=95 (number of extra extends).

4. For the fourth newly added disk, we have assigned extra extends from the current disk 4,

extra extends from the current disk 5, extra extends from the current disk 8, and extra

extends from the current disk 9 with total load 43+32+12+8=95 (number of extra extends).

We have gotten 97-94=3 as a difference between the maximal load and the minimal load,

which would be the load imbalance. Clearly, 3 is an extremely small imbalance number,

making this algorithm close to optimal. Also we have equal load of 95 evenly distributed

extra extends among the two other newly added disks, which makes this procedure quite

precise. Obviously the APR algorithm time complexity without the time for sorting is T=О(ms

n), where ms is the number of newly added disks and n - number of existing pool disks,

because we have ms iterations of the outer loop and on each iteration we have n processed

elements (inner loop). If we add the time for counting, then T= О(ms.n)+O(b+n)=O(ms.n) (b

is an integer).

Conclusion

The provided APR algorithm solves the Automated Pool Rebalancing task by using fast

extra extends redistribution. The method is based on distributing an even number of extends

among the disks in the ―old‖ pool and creating a maximally balanced distribution of extends

over the newly added disks. So, in practice, we have created ideal load distribution on the

bigger existing pool and close to ideal load distribution on the small ―additional‖ pool, such

2012 EMC Proven Professional Knowledge Sharing 10

that, after the extension, the two pools combined create one unified almost perfectly

balanced pool. This approach is typical for the heuristic methods.

APR has been implemented as a program and tested with different n (number of current

disks) and ms (number of newly added disks). As ms grows, the imbalance becomes lower

and lower with small variations. Also the higher numbers of n we have, the better extra

extends redistributions we will get, making this algorithm perfect for large spools containing

hundreds of disks. Thus, our heuristic algorithm works optimally for large numbers of pool

disks and newly added disks.

Table 5 shows some practical results after running a program implementing this algorithm.

Our example is for the run time (T *1000) and imbalance for a cases with n=100 to 1200,

ms=4 and 6, and randomly generated array A containing extra extends. The run time is

received by 1000 times execution of the program for each n since T cannot be measured (is

too small – mostly 0 on one execution). Figure 2 show the graphics of the run time from

Table 5; they confirm the theoretical time complexity O (ms. n) – linear at fixed ms.

N 100 200 300 400 500 600 700 800 900 1000 1200

T*1000
sec(k=4)

0.16 0.33 0.55 0.71 0.88 1.10 1.26 1.43 1.65 1.81 2.25

Imbalance
(ms=4)

32 5 19 4 1 4 6 0 1 5 1

T*1000
sec(k=6)

0.27 0.49 0.77 1.04 1.32 1.59 1.87 2.14 2.42 2.69 3.24

Imbalance
(ms=6)

34 21 7 3 5 5 3 2 1 5 4

Table 5

Figure 2

2012 EMC Proven Professional Knowledge Sharing 11

References

[1] Barnes M. Efficient generation of Graphical partitions, Disc. Appl. Math. 78: pp.17-26,
2003
[2] Bourke T. Server Load Balancing, O‘Reily Media Inc., 2002
[3] Garey, Michael R. and Johnson, David S. "A 71/60 theorem for bin packing", Journal of
Complexity, Vol. 1, pp. 65–106, 1985
[4] Gyori, Ervin More Sets, Graphs and Numbers, Springer, 2000
[5] Mertens S. Number partitioning, URL http://arxiv.org/ftp/cond-
mat/papers/0310/0310317.pdf, 2003

http://en.wikipedia.org/wiki/Michael_R._Garey
http://en.wikipedia.org/wiki/David_S._Johnson
http://arxiv.org/ftp/cond-mat/papers/0310/0310317.pdf
http://arxiv.org/ftp/cond-mat/papers/0310/0310317.pdf

2012 EMC Proven Professional Knowledge Sharing 12

Appendix

APR Algorithm Code (C++):
#include <iostream.h>

#include <math.h>

#include <stdlib.h>

typedef int t_element;

const int nmax = 10000, key_min = 0, key_max = 2001,kmax=4,maxint=100000;

void bucket_sort(t_element a[], t_element pom[], int n, int kmin, int

kmax1)

{ int kliuch, broi, i;

 for(kliuch = kmin; kliuch <= kmax1; kliuch++){

 pom[kliuch] = 0;

 }

 for(i = 1; i <= n; i++){

 pom[a[i]] = pom[a[i]] + 1;

 }

 i = 1;

 for(kliuch=kmax1; kliuch>= kmin; kliuch--){

 for(broi=1; broi<=pom[kliuch]; broi++){

 a[i] = kliuch;

 i++;

 }

 }

}

void main(void)

{int n=10000 , index,i,k,jpmin,jomin,j,jj;

double temp,piv,delta,dpmin,domin,s,snova,mmax,mmin,

 server[kmax+1];

 t_element a[nmax], pom[key_max],used[nmax];

 while(n > 9999){

 cout << " Insert the number of elements of the array

(<1000): ";

 cin >> n;

 }

/* for(index = 1; index <= n; index ++){

 while(a[index]<1 || a[index]>100){

 cout << " enter element (>0&<101) : " << index <<

" : ";

 cin >> a[index];

 }

 }*/

 int r1,r=2000;

 srand(r);

 r1=rand();

 for (i=0;i<=n;i++)a[i]=rand()%2000+1;

 bucket_sort(a, pom, n, key_min, key_max);

 cout << "The sorted array is : \n";

 /* for(index = 1; index <= n; index ++){

 cout << " " << a[index] << " :";};

 cout<<endl;*/

 s=0;

 for (i=1; i<= n;i++) { s=s+a[i];used[i]=0; };

 piv=s/kmax;

 for (k=1; k<=kmax-1;k++)

2012 EMC Proven Professional Knowledge Sharing 13

 {

 delta=a[k]-piv;

 server[k]=a[k];

 if (a[k] >=piv) goto e10;

 dpmin=maxint;

 domin=-maxint;

 if (delta>=0) { dpmin=delta;

 jpmin=k;}

 else { domin=delta;jomin=k;used[k]=-k; };

 temp=a[k];

 j=kmax+1;

 while (j<=n)

 {

 if (used[j]==0)

 {temp=temp+a[j];delta=temp-piv;

 if (delta>=0)

 //then

 { if (delta==0){ server[k]=piv;used[j]=k;goto e10; };

 if (delta<dpmin){ dpmin=delta;

 jpmin=j; };

 temp=temp-a[j];

 }

 else

 { if (abs(delta)<abs(domin)) { domin=delta;jomin=j ;};

 used[j]=-k;

 }

 //{end of if delta}

 }//{end of the first if};

 j=j+1;

 };//{end of the second loop - on j}

 if (abs(dpmin)<=abs(domin))

 { server[k]=piv+dpmin;

 used[jpmin]=k;

 for (jj=jomin; jj>= jpmin+1;jj--)

 if (used[jj]=-k)used[jj]=0;

 else server[k]=piv+domin;}

e10: ;

 };//end of the first loop - on k

server[kmax]=a[kmax];

for (j=kmax+1; j<=n;j++) if(used[j]==0) server[kmax]=server[kmax]+a[j];

//{writeln; writeln('s=',s,' pivot=',piv);}

snova=0;

mmin=server[1];mmax=mmin;

for (k=1;k<=kmax;k++)

{

 //{write(' k=',k, ' ',server[k]);}

snova=snova+server[k];

 if (server[k]>mmax) mmax=server[k]; else if (server[k]<mmin)

 mmin=server[k];

 //{writeln;writeln('snova=',snova);}if snova<>s then writeln('error');

 //{writeln('misbalans=',mmax-mmin)}

};

// finish(t);

// report('t=',t);

 cout<<"s="<<s<<" pivot="<<piv<<endl;

 cout<<"snova="<<snova<<endl;

 cout<<"misbalans="<<(mmax-mmin)<<endl;

}

2012 EMC Proven Professional Knowledge Sharing 14

EMC believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED ―AS IS.‖ EMC
CORPORATION MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND
WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY
DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an
applicable software license.

